IMPERIAL ADAPTIVE REUSE
Sugarland Heritage Museum & Fort Bend Children's Discovery Center

Daniel Serna
University of Houston
Gerald D. Hines College of Architecture
DESIGN CONCEPT

The concepts of the design were the footprint of the existing railroad that ran in between the silos and the container warehouse, and the program requirement of an *agricultural exhibition* space which will be the final sequence of a series of exhibition spaces. The lobby space is the largest component of the program and this will be the *grand entrance* into the museums. Its presence will be felt on the site and will extend beyond the profile of the warehouse and the silos.

HUMAN HEALTH IMPACT

The green roof in the Sugarland Imperial Adaptive Reuse project will impact the environment substantially. The use of an intensive green space and an extensive system over the existing warehouse allows these spaces to be occupied. It strengthens the railroad concept and can be viewed from the lobby when entering the building. It alludes to the function of what the warehouse used to be by illustrating the growth of sugar and having a tangible experience as part of the exhibit of the Sugarland Heritage Museum.
The roof providing the shelter to the void between the existing warehouse and the silos emulates the profile of the railroad that previously ran between the buildings. It was used to ship Imperial Sugar around the world, and became the gutter in the scheme of my design. The collection of water happens in a landscape feature that holds the water from these gutters.
The structure of the existing structures is a concrete system and the addition of the lobby between the existing structures will be steel frame. Bracing is visible in the lobby and maintains the industrial character the site already has.
Copper Panels used on facade to highlight the form of the silos and maintain industrial aesthetic. Red Brick of container warehouse and painted concrete of the silos are the existing materials. The old versus new apparent in the difference in structural systems.